Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinform Adv ; 4(1): vbae032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464974

RESUMO

Summary: Transcriptome deconvolution has emerged as a reliable technique to estimate cell-type abundances from bulk RNA sequencing data. Unlike their human equivalents, methods to quantify the cellular composition of complex tissues from murine transcriptomics are sparse and sometimes not easy to use. We extended the immunedeconv R package to facilitate the deconvolution of mouse transcriptomics, enabling the quantification of murine immune-cell types using 13 different methods. Through immunedeconv, we further offer the possibility of tweaking cell signatures used by deconvolution methods, providing custom annotations tailored for specific cell types and tissues. These developments strongly facilitate the study of the immune-cell composition of mouse models and further open new avenues in the investigation of the cellular composition of other tissues and organisms. Availability and implementation: The R package and the documentation are available at https://github.com/omnideconv/immunedeconv.

2.
Int Rev Cell Mol Biol ; 382: 103-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38225101

RESUMO

Methods for in silico deconvolution of bulk transcriptomics can characterize the cellular composition of the tumor microenvironment, quantifying the abundance of cell types associated with patients' prognosis and response to therapy. While first-generation deconvolution methods rely on precomputed, transcriptional signatures of a handful of cell types, second-generation methods can be trained with single-cell data to disentangle more fine-grained cell phenotypes and states. These novel approaches can also be applied to spatial transcriptomic data to reveal the spatial organization of tumors. In this review, we describe state-of-the-art deconvolution methods (first-generation, second-generation, and spatial) which can be used to investigate the tumor microenvironment, discussing their strengths and limitations. We conclude with an outlook on the challenges that need to be overcome to unlock the full potential of next-generation deconvolution for oncology and the life sciences.


Assuntos
Transcriptoma , Microambiente Tumoral , Humanos , Perfilação da Expressão Gênica , Tecnologia
3.
Bioinformatics ; 38(Suppl_2): ii141-ii147, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36124800

RESUMO

MOTIVATION: As complex tissues are typically composed of various cell types, deconvolution tools have been developed to computationally infer their cellular composition from bulk RNA sequencing (RNA-seq) data. To comprehensively assess deconvolution performance, gold-standard datasets are indispensable. Gold-standard, experimental techniques like flow cytometry or immunohistochemistry are resource-intensive and cannot be systematically applied to the numerous cell types and tissues profiled with high-throughput transcriptomics. The simulation of 'pseudo-bulk' data, generated by aggregating single-cell RNA-seq expression profiles in pre-defined proportions, offers a scalable and cost-effective alternative. This makes it feasible to create in silico gold standards that allow fine-grained control of cell-type fractions not conceivable in an experimental setup. However, at present, no simulation software for generating pseudo-bulk RNA-seq data exists. RESULTS: We developed SimBu, an R package capable of simulating pseudo-bulk samples based on various simulation scenarios, designed to test specific features of deconvolution methods. A unique feature of SimBu is the modeling of cell-type-specific mRNA bias using experimentally derived or data-driven scaling factors. Here, we show that SimBu can generate realistic pseudo-bulk data, recapitulating the biological and statistical features of real RNA-seq data. Finally, we illustrate the impact of mRNA bias on the evaluation of deconvolution tools and provide recommendations for the selection of suitable methods for estimating mRNA content. SimBu is a user-friendly and flexible tool for simulating realistic pseudo-bulk RNA-seq datasets serving as in silico gold-standard for assessing cell-type deconvolution methods. AVAILABILITY AND IMPLEMENTATION: SimBu is freely available at https://github.com/omnideconv/SimBu as an R package under the GPL-3 license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Perfilação da Expressão Gênica , RNA , Perfilação da Expressão Gênica/métodos , RNA/genética , RNA Mensageiro , RNA-Seq , Análise de Sequência de RNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...